An Efficient Approach for Differentiating Alzheimer's Disease from Normal Elderly Based on Multicenter MRI Using Gray-Level Invariant Features
نویسندگان
چکیده
Machine learning techniques, along with imaging markers extracted from structural magnetic resonance images, have been shown to increase the accuracy to differentiate patients with Alzheimer's disease (AD) from normal elderly controls. Several forms of anatomical features, such as cortical volume, shape, and thickness, have demonstrated discriminative capability. These approaches rely on accurate non-linear image transformation, which could invite several nuisance factors, such as dependency on transformation parameters and the degree of anatomical abnormality, and an unpredictable influence of residual registration errors. In this study, we tested a simple method to extract disease-related anatomical features, which is suitable for initial stratification of the heterogeneous patient populations often encountered in clinical data. The method employed gray-level invariant features, which were extracted from linearly transformed images, to characterize AD-specific anatomical features. The intensity information from a disease-specific spatial masking, which was linearly registered to each patient, was used to capture the anatomical features. We implemented a two-step feature selection for anatomic recognition. First, a statistic-based feature selection was implemented to extract AD-related anatomical features while excluding non-significant features. Then, seven knowledge-based ROIs were used to capture the local discriminative powers of selected voxels within areas that were sensitive to AD or mild cognitive impairment (MCI). The discriminative capability of the proposed feature was measured by its performance in differentiating AD or MCI from normal elderly controls (NC) using a support vector machine. The statistic-based feature selection, together with the knowledge-based masks, provided a promising solution for capturing anatomical features of the brain efficiently. For the analysis of clinical populations, which are inherently heterogeneous, this approach could stratify the large amount of data rapidly and could be combined with more detailed subsequent analyses based on non-linear transformation.
منابع مشابه
Detection of Alzheimer’s Disease in Elder People Using Gait Analysis and Kinect Camera
Introduction: Gait analysis through using modern technology for detection of Alzheimer's disease has found special attention by researchers over the last decade. In this study, skeletal data recorded with a Kinect camera, were used to analyze gait for the purpose of detecting Alzheimer's disease in elders. Method: In this applied-developmental experimental study, using a Kinect camera, data wer...
متن کاملDetection of Alzheimer’s Disease in Elder People Using Gait Analysis and Kinect Camera
Introduction: Gait analysis through using modern technology for detection of Alzheimer's disease has found special attention by researchers over the last decade. In this study, skeletal data recorded with a Kinect camera, were used to analyze gait for the purpose of detecting Alzheimer's disease in elders. Method: In this applied-developmental experimental study, using a Kinect camera, data wer...
متن کاملHippocampal Atrophy Studying in Alzheimer's Disease Diagnosis Using Brain MRI Images
Background and Aim: For effective treatment of Alzheimer's disease (AD), it is important to accurately diagnosis of AD and its earlier stage, Mild Cognitive Impairment (MCI). One of the most important approaches of early detection of AD is to measure atrophy, which uses various kinds of brain scans, such as MRI. The main objective of the current research was to provide a computerized diagnostic...
متن کاملPrediction and classification of Alzheimer disease based on quantification of MRI deformation
Detecting early morphological changes in the brain and making early diagnosis are important for Alzheimer's disease (AD). High resolution magnetic resonance imaging can be used to help diagnosis and prediction of the disease. In this paper, we proposed a machine learning method to discriminate patients with AD or mild cognitive impairment (MCI) from healthy elderly and to predict the AD convers...
متن کاملRegional Atrophy Analysis of Alzheimer Brain Magnetic Resonance Images Using Local Texture Patterns
Alzheimer Disease (AD) is the most common type of dementia among elderly people. It is a severe neurodegenerative disorder which is highly characterized by progressive loss of brain tissues. It interferes with normal activity of daily living due to loss of cognitive ability. Magnetic Resonance Imaging (MRI) has been proven to be very useful in early diagnosis and progression analysis of AD. Thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014